Parametric Poincaré-perron Theorem with Applications
نویسنده
چکیده
We prove a parametric generalization of the classical PoincaréPerron theorem on stabilizing recurrence relations where we assume that the varying coefficients of a recurrence depend on auxiliary parameters and converge uniformly in these parameters to their limiting values. As an application we study convergence of the ratios of families of functions satisfying finite recurrence relations with varying functional coefficients. For example, we explicitly describe the asymptotic ratio for two classes of biorthogonal polynomials introduced by Ismail and Masson.
منابع مشابه
The Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملPoincaré Duality Embeddings and Fibrewise
We prove a relative Poincaré embedding theorem for maps of pairs into a Poincaré pair. This result has applications: it is the engine of the compression theorem of the author’s paper in Algebr. Geom. Topol. 2, (2002) 311–336, it yields a Poincaré space version of Hudson’s embedding theorem, and it can be used to equip 2-connected Poincaré spaces with handle decompositions.
متن کاملApplications of Perron-Frobenius theory to population dynamics.
By the use of Perron-Frobenius theory, simple proofs are given of the Fundamental Theorem of Demography and of a theorem of Cushing and Yicang on the net reproductive rate occurring in matrix models of population dynamics. The latter result, which is closely related to the Stein-Rosenberg theorem in numerical linear algebra, is further refined with some additional nonnegative matrix theory. Whe...
متن کاملA Perron-type Theorem on the Principal Eigenvalue of Nonsymmetric Elliptic Operators
We provide a proof for a Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators based on the strong maximum principle. This proof is modeled after a variational proof of Perron’s theorem for matrices with positive entries that does not appeal to Perron-Frobenius theory.
متن کامل